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. .  
. INTRODUCTIOV 

A$ iihe:reguest o f  the Bureau of keronau.tics, Navy 
Dapartrnent, .tha ' f ly ing  q u a l i t i e s  o f  a Curtiss SBZC-1 a i r-  
plane (Eo. 000.14) have been xeasure .+ The tests were 
conducted a t  Langley  field, Va,, b e t  Ben A p r i l  27 and 
May 22, 1945.. In, addi t ion  t o  complete t e s t s  of the 
ai rplane i n  ihs. or ig ina l  condftfort, t e s t s  were made. t o  
determine t b e , e f f e c t  o f  a bobwefqht in the elevator 
system, and the e f f s c t  o f  s e a l s  in the a i le ron  gaps. 
Fourteen fl- igbts.  andlapproxiuiately 18 hours o f  f ly ing  
time were required t o  complete the.  tests  Measurements 
of s t r u c t u r a l  loads  ,vy$re .mads onltwo other  Curtiss 
SB2C-1 airpPdries, Nos. 00056 arid 00140. Certain addi- 
t i o n a l  fiiformatfoq with regard to  the f ly ing  ,qualft%es 
that w a s  obtai'ne6 .in. .the.se fnvestfgat ions 2.s a l s o  
presented. . ' .  

, * . . , - '  * -  
b . .  . ' -  

DZSGRIPTION,, I . . .  OF THE CURTISS SB2C-1 AIRPLAXE 
. ... * r '  * 

I The *SB2C-1 'a i rplane fs a tao-place, sfn@ecengine, 
low-wing cant i lever  monoplane wfth re t rac tab le  landfng 
gear and part iai-span s p l i t  flaps (figs. 1 to  4 ) .  All 
data gfven f n  -thfs. qepo.rt apply t o  a i rplane No. 00014 
unless otherwX'ae hoted. Airplane No, 00056 did not 
d f f fe r  from' No, OOOJ4. except i n  minor detaels  of the , . . .  

I 
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canopy and rad10 in s t a l l a t i on .  Airplane No. 00140 w a s  
equ.ipped with Q more r i g i d  wing and s t ab i l i ze r .  The nose 
cn the elevator  balance of No. 00140 w a s  modfffed t o  
have e smaller radius, ana "f6r  'suiie f l i g h t s  a mdder with 
twfce the normal number of ribs was used. The general 
speci f ica t ions  o f  the airplane follow: 

Name and typa ............................ Curtiss SBZC-1 
[Bureau of Aeronauttcs No. 00014) 

Engine .......................... Curtiss-rliTrPght R-2600-8 

Take-off ............................. 1700 hp a t  S.L. 
Iv IE lk t a rg  ( low blower) ........ 1700 hp S.L. t o  3000 f t  
Normal. ( low blower) ....... ; . 1500 hp S.L. to 6700 f t  
Morrrial (h igh blower) ....... 1350 hp 6700 t o  13,000 f t  

Gear r a t i o  ......................................... 16:9 
Propeller 2 

Diameter ...................................... 12 f t  
Number o f  blades ................................. 3 

Fuel. capacfty ................................. 290 gal  
O i l  capacity .................................... 25 gal  
Empty  weight .................................. 10,114 lb 
Normal gross weight . . . . . . O . O . O . . . . . . . . O . . . ? . .  12,677 l b  
Wing loadfng (normal gross weight) ......... 30.1 lb/sq f t  
Powe.r loadkng (normal .grass .wefgbt) ......... 7.46 lb/hp 
Over-all hekght ( t h r u s t  axis l eve l )  ....... 16 $ t  11 in .  
Over-all length ............................ 36 f t  8 in. 
Wing : 

Span .................................... 49 f't 88 in.  

Rated.:: 

. 

' 5  

Area ( including a i lerons  and 21.6 sq f t  
. fuselage) ............................... 422 sq ft 
k f r f o i l  section: 

Root  . O . . . O . . . . . O e . . . . . . . . o ~ ~ e . ~ . e . . . O .  NACA 23017 
T i p  ................................... NACA 23009 

Aspect r a t i o  .................................. 5.87 
Mean aerodynamic chord .................... 109.3 in, 

a t  r o o t  .............................. 0.34 in.  
Taper r a t i o  ............................... 2.32 t o  1 
Dihedral ( leading edge o f  wing) ................ 6.0' 

00 

Dfstance behind h a d i n g  edge of wing 

.Incfdence 1- 10 a t  r o o t ,  Lo a t  t i p  
8!!ggp&ap$ ck l ' a  fs$f?@ f laps edge of on ~ ~ f n g ) 2 ~ . . . . ~ . . ~ . . . 2 ~ . ~ . .  upper and 

. ................... 
kowm surfaces) ....................... 52.2 sq f t  
Maximum deflect ion (3a;ndb ) .  ..... Oo up, 60° down 

' Pliaxfmum def'lectlon (diving P . . 450 up$ 450 down 
S l a t  (extends. w l t h  landfng'gear) .  .Covers 29.4 percent 

span inboard of rounded t ip  
. 

a b , *  
a 
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Ecrizontal  t a i l :  1 
S ~ a n  . . o . . . D . . O . D . . . ~ O . l O O . . ' . O . . Y I I . . . . .  19 f t  2 in .  
To tsl hor izonta l- ta i l  area inclu.r?i.r,g 

arm through fEsEilage . e . (I e e 107.4 sq f t 

hinge l i n e  O . . . . . . O . O o . D O O O . O . O O . . . O I .  10.C8 sq f t  
3 leva tor .a rea  a f t  of  hinge l l n e  

including trirn tab  D . O . . e . O . O . . . . . . . . .  27.8 sq f't 
Trfm tab area ( l e f t  s ide)  . . . O O O . o o . . . . e .  1.42 sq f t  
%lance tab (right s ida)  locked 

. IIorPzontal-tail  sect ion * . .  Modified NACk .O009-64 
Stab i l f ze r  fncfdence C . 0 . . . . P 0 . . . D 0 . . 0 P . . o ~ ~ ~ ~ ~ ~ ~ . 3 ~ O o  
Elevator f a b r i c  tensfona(airplane 00014). . 4,s lb/in.  

(airi,3.aae 00340) . . 3 . 1  Ib/in ., 

Total v e r t i c a l - t a r 1  area Oe.P...OOODO...O. 45.7 sq f t  
Rndder balance area  forwa6d cf 

hfnge l i n e  . . 0 . . . . 0 0 0 0 0 . . 6 0 . . 0 0 . , . * . ~ * . ~  3 - 0  sq f t  
Ruddsr ama a f t  hinge l f c e  

includfng trirn tab . O . O . * . O O O D . O e . O . C . .  19,2 sq f t  
9udder t r h  tab are8 e o  e o  a .' 1.42 sq f t  
Salance tab lockadi 

ALleron ar-ea a f t  hing3 l i n e  (each afleron). 13.7 sq f t  
k f l e ron  chord, pzrcent Wing chord . e O . . o . O O O O . O . . .  24 
Aileron balance chord, percent 

a i l e ron  chord  O O O . O . o O ~ O . D O ~ O . O C . . ~ . ~ ~  ....... 31.7 

of afrplarle e .  a e e e ., ., . D.. e e ,, 0.53 b/2 

o f  aL_rplane e e e e e . * .  0,93 b/2 

s ide balance) each . p . . O O . . . . O . . e . . O . O .  G . 6 2  sq f t  

leva tor  balarrce &rea l'oiward o f  

Ver t ica l  t a i l  svrfaces :: 

Ai la rc ins  :: 

. Inboaxi end o f  a f l e ron  t o  w n t e r  l i n e  

Outboard end of a i l z ron  t o  csn ter  l i a e  

AiLeron tab  ar.ea ( l e f t  s i3e  trim, r ight  

. .  

aThe e l s v a t o r  Fabric tenston was neasured quant i ta t ive ly  
with a spec ia l  Lnstrument. A tension o f  3 pounds per 
Lnch f s  corisfdered normally tfght. 

The r e l a t fon  between c o n t r o l  3ef iect ions and s t i c k  
and rudder pedal posi t ions  with no h a d  on the surfaces 

t i s  glven i n  figure 5, Elevator and ruader angles are 
gfven with respect  t o  t h e  thi-ust axis tinroughout t h f s  
r e p o r t .  T a 5  set t ir igs given on tka ;'ig;ures r e fe r  t o  t r h  
t a b  anglas, not cockpIt-indicator readings. Sections of 
the horfzontal  t a i l ,  ver tPcal  t a i l ,  and aileron I n s t a l l a -  
ion are given i n  f igures  6, '7, and 8, respectively,  The 
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l e t t e r e d  s e c t i o n s  @veri on these  ffgixres cor5espond t o  
the l e t t e y e d  s e c t i o n s  given on f i g w e  4. 

The prod-uct o f  t h e  span and chord sqaared, on wMch 
’ hinge-moment c o e f f i c i e c t s  Tor the var1ov.s control s u r f a c e s  

a r e  based, i s  as f o l l o w s :  

Elevator,.,I, ..,.....,.,,....... .... ~ O . . . O . . . a O . . O O . . o O  48 
Aileron  (each) , . . , . . ,  O . O . ~ ~ . O . O O . . . . . O . . O . o ~ ~ ~ ~ ~ ~ . o  22.2 
Rudder. .....~.....o.O..........,........~~~.~~.~.~m 44-5  

The f r i c t f o n  of  the c o n t r o l  systen. w a s  2 s  fo l lows:  

1. Slevator-coiqtrol  systsm f 5  pounds 

2 .  Klleron-cont ro l  system k4 pounds 

3 .  Rudder-control s p t e m  - F r i c t f o n  v a r i e d  with 
rudder p o s i t f o n  (%e f2g. 9 . )  A t  1arf;e de f l ec t fon ,  the 
f‘orcc: r equ i red  t o  G;OBB thi? rud3377 on tlis gro ixd  i:~as due 
In p a r t  t o  spr ing5ness  lin the control systeci. 

niaximun? allowable u-ndel- R3quiremer.t C- 6  o f  r3i”erencs I 
The rudder frfct5.on a t  most m d d e r  positions exceeded 
that al.lowakle u n d e r  thc above zequiramsnt . 
e l e v a t o r- c o n t r o l  s y s t o ~ ~  as w e d  f n  tns  l o n g i t u d i n a l  s t a -  
bility c.nd c m t r o l  t a s t s  a t  thz more marward writer-of- 
g r a v i t y  pos f t ions .  

The elevator ;  and a5.laron f r i c t i o a  was abm-t  the 

3’fpx-e 10 g1i7es a drawj-cg o f  the bobmfeht  fr, t h e  

Standard NACA photograph9cally recording  instruments  
were used t o  maam-re the var ious  q u a n t i t i e s  necessary  t o  
de terrnize tile f l g l n g  q u a l i t f e s  o f  tiit3 s v b j e c t  a i r p l a n e  
The records  were synchronized- b$ means c.f a t i m e r ,  The 
fnstntments  usgd and tile q u a n t i t i e s  neasv-rel! fol low: 

I 
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Recording instrument Quantity measured 

\ 

Airspeed recorder Indicated  alrspeed 

Three -cornpone n t  

R o l l  turn ‘.ah t e r  Rol l ing  v e l o c i t y  

Pi tck ,  t u r n  meter 

.” - .. 
Normal, long i tud ina l ,  and 

acceloSbmeter t ransver  st; acce l e r a t i on  
I .  5 .  

P i  tchfng veloc Zty 

Inclinometer Angle o f  bank 

. %  

“ Rudder-fame ‘recorder:  . ’r 
‘ Control  -po s i t i o n  re  co6de r Budde r Etlevator, and a i l e ron  

, .  I *  pos i t i on  (measured a t  the , _  

surqaca) . 

Y .  

! 

! 

If: recorder was . 
a f t  wing t i p .  

as meashred w 4 t h  a swiveling s t a t i c  
Itc)taZe.-h&ad, mounted . -1 chord length 
irig t i p i  
Igd coryect  service  EndScated air- . , : 

1 

The .a i rspeed used through- 

v i  
f0 

q C  measured d i f fe rence  between t o t a l  and s t a t i c  pres-  

c o $i-%Yt”*’S’e r v  i^ce’* .%rid 1 c ate d a f r s pe B d , m i  1 e s pe r hour 

s iandard 3138- L e  vd 1 compre s sib -Eli t y  co r r ec t  ion f a c  t o r  

sures corrected  for p i t o t - s t a t i c  p o s i t i o n  error, 
inches o f  water 

(Not:: that this h d f c a t e d  airspeed corresponds t o  the 
reading o f  a p i l o t ’ s  meter connected t o  a p l t o t - s t a t i c  
i n s t a l l a t i o n  that  has no p o s i t i o n  error.) 
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TESTS 
" 1  

The a f rp lane  was flown a t  center-of-gravlty loca-  
t ions  rangfng from 23.8 t o  31.3 percent  M . L ~ ~ C .  The gross  
.weight var ied  f rom 12,000 ita 12,700 pounds. ,There w a s  
some forward s h i f t  of  the center  of g m v i t y  with gas 
consm-ption. The center-of -g rav i ty  pos i t l -ons  were cor-  
r ec t ed  f o r  t h i s  e f f e c t .  

The f l i g h t  conditions used i n  the t e s t s  a r e  defined - 
be low 

- 
,and i ng 
gear 

c_ 

UP 

UP 

Dawn 

DOWn 

Down 

UP 

UP 

In add i t i on  t o  the prcscr ibed  t e s t s  f o r  the f ly ing-  
q u a l i t i e s  i nves t iga t ion ,  t e s t s  were a l s o  made of the 
long i tud ina l  s t a b i l i t y  and con t ro l  w%th a bo3we.igh.t 
requi r ing  a pull fo rce  o f  11 pounds on the s t i ck . '  Details 
of the bobweight i n s t a l l a t i o n  ar;e gfverz in f igure  10. 
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RESULTS AND DISCUSSION 
, .  1 . .  

The . resu l t s  are presented and analyzed i n  the order 
given in reference  2 w i t h  reference made t o  the spec i f i c  
requiredents  of reference 1 

I. LcngTtudinal S t a b i l i t y  and Control, 

I-A. Charac t e r i s t i c s  of  uncontrol led  longitudinal 
mot ion 

The c h a r a c t e r l s t f c s  of' the uncontrol led  long%- 
tudfnal  motion were investigated a t  va r ious  speeds through 
the speed range i n  the climbing 2nd g l i d i n g  condition. I n  
these t e s t s  the  a i rp l ane  was trimmed a't tine given speed 
and continuous records were taken while the p i l o t  abrup t ly  
de f l ec t ed  and re leased  the e l eva to r .  No o s c i l l a t i o n  
ensued. In either condi t ion a t  any speed t e s ted .  Typical 
tfms h f s t o r f e s  of h f s  maneuver are  gfven i n  f i g u r e  11. 
It should be noted from th i s  f igure  t h a t  although the 
e leva tor  d i d  not  o s c i l l a t e ,  T t  did no t  r a t u r n  t o  t r i m  
because of  the  f r i c t i o n  force.  I 

I-E. Charac t e r i s t i c s  of e levato?  c o n t r o l  In  s teady 
f 1 i g h t  

The charac-terd.s t i c s  o f ,  e lgva tor  con t ro l  i n  
s teady f l i g h t ,  at; speeds ranging from the stall t o  moder- 
a t e l y  high speeds, were obtafnad by measuring the e l eva to r  
angle and force required t o  trim w f t h  a t  leas2; two 
center- of- gravi ty  pos l t i ons  i n  each. o f  the various condf- 
t i ons  of  f l i g h t .  The followfng t a b l e  lZsts the f l i g h t  
cond'itions t e s t e d ,  the center-of- gravity posi teon,  whether 
o r  not  the bobwelght w a s  i n s t a l l e d  and the f i gu re s  in 
which t,he experimental data a re  presentec3. 

a 

I 
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'1 igiit c ondi t i o n  

Gliding 

G!.fdfng 

C 1 irribfng 

C 1 i mb i ng 

Eve f l a p s  open 
(2ovrer on) 

Ifve fla-gs open 
( ;owe r on)  

l ive  f l aps  open 
(power a f f )  

live f l a p s  open 
(power o f f )  

LandLilg 

ATproach 

Yave -of f  

Center-of -g rav i ty  
p o s i t  ion  

24.55'and 28.0 

31.3 

24.9 and 28.54 

31.6 

24.4 

29.35 

29.35 8 

23.7 and 26 ,8  

24,7 and 28.0' 

24.0, 24.3,and 27.t 

Control 
system 

'Pu'ormml 

lobweight 

WormaZ 

iobwe Sght 

Normal 

kbwe i g h t  

No rrna 1 

3obweigh-t 

Normal 

Bo r m a l  

Normal 

Figure mo 

12 

12 

The d i r e c t i o n a l  t r f m  charac te rTs t ics  8s well as 
the long i tud ina l  s t a b i l i t y  data a re  Included i n  the fo re-  

.. going figures. 

. The s $ a t i c  long i tud ina l  s t a b i L f t y  data were 
evalb-ated t o  determine the s t i ck- f ixed  and s t fck- f ree  
n e u t r a l  po ln t s  by the fol lowing methods. Figures wBre pre-  
pared showing tbe v a r i a t i o n  of' e l eva to r  angle ise with 
the a i rp lane  l i f t  c o e f f i c i e n t  CL f o r  each center-of-  
g rav i ty  p o s i t i o n  i n  various condit ions o f  P l lgh t .  T m i c a l  
f i gu re s  r3f '  t h i s  type a r e  fncluded ( f i g s .  1 6  and 17) i n  
oFder t o  i l l u s t r a t e  the degree o f  accuracy o f  the data .  
The slopes of these curves were measured a t  representa t ive  
values o f  the l i f t  c o e f f i c i e n t  and weye p l o t t e d  as func- 
t i ons  of' center- of- gravi ty  posi t iolr  i n  f igure  18. The 
s t fck- f ixed  n e u t r z l - s t a h i l l t y  po in t s  a r e  found from t h i s  
f igure  as tbe ccnter-of-gravi ty  pos l t fon  a t  which the 
s lope dGe/dCL = 0. Figu-ras were a l s o  prepared which . 

showed the v a r i a t i o n  o f  = l eva to r  f o r c e  d iv ided by dynamic 
pressure F/q wi th  airplarie lift c o e f f i c i e n t  The slopes 
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of these curves w a r n  a l ~ o  i~eaaured  a t  representa t ive  l i f t  
c o e f f f c i e n t s  and plotted 8s Tunctfons of center- of- gravi ty  
p o s i t f o n  on f i g u r e  28. Tkm z t i ck - f ree  n e u t r a l  poin t  is 
def ined  as the centep-of-gravity p o s i t i o n  a$ which the 

F 
d- s lope  - q = 0. Acewatt3 ineasu-rernents o f  the e l eva to r-  
dCL . 

s t f c k  fo rces ,  howeve$, were d i f ' f l c u l t  because o f  the f ' r ic-  
t f o n  force  i n  the  e l eva to r- con t ro l  system tha t  caused a 
fo rce  on the grip of' the s t i c k  of' about 5 pounds when the 
stfc'lr was moved slowly i n  e f t h e r  d i r e c t i o n .  This source 
o f  e r m r  m u s t  be kept f n  mfnd when i n t e r p r e t i n g  the 
r e s u l t s  OS the e leva tor -s t fck- force  measurements. 

(a) The s t i ck- f ixed  n e u t r a l - s t a b i l i t y  p o f n t  i n  
t h a  gliding condi t ion was betwot;n 33 and 34 percent  
of  the mean aarodynamlc chord.  Application o f  r a t ed  
powar (c1in:bing condi t ion)  caused a large des ta-  
b i l i z i r L g  e f f s c t ,  espec ia l17  a t  speeds near  that; used 
f o r  b e s t  cl.imb, In ths climbing conBl".tlon a t  an a i r -  

n e u t r a l  po in t  was a t  25 percent o f  tile mean aero-  
dynamic cho rd 

plane l i f t  c o e f f l c f e n t  of 1.0, t h  s t l c k - f ' h e d  

( b )  The s t i c k- f i x e d  n e u t r a l - s t a b f l k t y  po in t  i n  
the landing condftion was a t  about 31 percerit of the 
nean aerodynamic chord. Application o f  power with 
f l a p s  down as w%th Slaps up caused a la rge  desta-  
b i l i z l n g  eff 'sct  as shown by t b z  .curves f o r  the 
approach and wave-off' conclftfon. 

( e )  V??Jith the dive f l a p s  exkendad, power o f f ,  
t h a  s t a t i c  s t a b i l i t y  was a1n:ost; She same as  i n  the 
g l l d f n p  condftion.  The most unstable  condi t ion  
encountered f n  the  t e s t s  w2.s wi th  dive, flaps extended, 
power on ,  a t  speeds near) tke s t a l l .  ' A t  M[?her speeds 
i n  this  condi t ion,  the s t ab i l l t l j .  was a l m o s t  the same 
as I n  the cll.rnbing condition. 

(d) Requirement D-6 o f  rafeilence 1 specef ies  
t h a t  the s t ick- ffxed  s t a 3 f l I t y  shoudd be such th8.t 
in the g l i d i n g  and 1a.nd-fng condi t ion,  the movement 
o f  the top o f  the s t i c k  shall n o t  be l e s s  than 
4 inches i n  trfnrr;ting f r o m  the maximurn  l e v e l - f l i g h t  
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speed t o  s t a l l l n g  speed. The present  data show that 
the  SB2C-1 a i rp lane  w f l l  meat t k f s  requirement only 
when ths cen te r  of g r a v i t y  i s  loca ted  f'omard o f  
24-5 percent  Rean aerodynamic chord  i n  the glEding 
condi t ion  and forward of  25-2ercent mean aerodynamfc 
chord i n  the landing coadi t fon.  Requfrsrient D-6 
( re ference  1) also s p e c i f i e s  t h a t  therae sha l l  Rot  be 
less than 1-Lnch s t f c k  motion i n  going f rom the speed 
f o r  mfnimum power t o  the s t a l l  i n  E;Pther the g l fd fng  
or l a n d k g  condi t ion.  Tl i f s  l a t t e r  requiremelit w f l l  
ba met by the  SE2C-1 a i rp lanc  vhen the centef of' 
g r a v i t y  $ s  forward of 29 percent  a e s n '  aei70dynzimfc 
s1iof.d i n  the @idling con6,ftfon avld 28,3 percent  riman 
aarodynamic chord i n  the landkng conc?it%ori. 

( e )  The s t a b i l i t y  with s t i c k  f r e e  was l a s s  than 
with s t i c k  f i x e d e  Tks s t i ck- f ree  n e u t r a l  poin t  was 
between 3 and 4 percent  o f  t h e  mean aerodynamic chord 
forward of the s t i ck- f fxed  n e u t r s l  poin t  i n  most 
f l f g h t  condi t ions 

(f') The e leva to r  control. was such that i t  was 
p'ossfble t o  maintain s teady flight a t  the mininium 
and. rriaxfimxn speeds required of' the a i rp lane .  

The rel2tivel-y l a r g e  Emou.nt of  f r i c t i o n  fn  the 
elevatoy-control  s g s t e ~  prevented the stick f rom re turnfng  
t o  i t s  trim p o s i t i o n  when disp lacsd .  The f r i c t i o n  was 
a L s o  be l f eved  t o  be responsible  f o r  an impression of 
i n s t a b L l f t g  cbtafned b;r the p i l o t s  viheiz they attempted t o  
mafntain constant-spe26. f l fg l i t  A dstaifled time hfstory 
or" the s t i c k  force and movement during a- run made I n  
a i rp lane  KO. GO14C i n  v7hfch the p i l o t  attempted t o  
maintafn a cons tan t  s3eed o f  207 m91es per  how f s  shown 
i n  f fgure  19, C o n t i n ~ a l  varlatBort o f  the s t i c k  force ,  
e l e v a t o r  angle ,  and normal accelei?ation is Indicated by 
tliis f igu re  , though the center-of-gravity loca t ion  was 
suff icl,?nt;ly- far forward t o  provide s t i ck- f ixed  s t a b i l i t y .  
The reason for the dffficulty experienced by the p f l o t  
In holding a spec i f i ed  speed w a s  bel ieved t o  be a combined 
e f f e c t  o f  f l e x i b i l i t y  Pn the c o n t r o l  systam and f r fc t l ion 
in the e l e v a t o r  hinge. X m a l - l  momnmnts o f  the s t f c k  
could be made vlrfthout moving the e l eva to r ,  but when the 
e l e v a t o r  s tar ted t o  move it would overshoot t h e  des i red  
pos i t ion .  The exac t  elevntox- angle required t o  trim a t  
207 mlles pe r  hour was th.erefore never a t t a i n e d  and 
contfnual  adjustments had tm be made, 
tha t  the a i rp lane  possessed s t i ck- f ixed  s t a b i l i t y ,  the 

I n  order  t o  v e r i f y  



, p t l o t  refeased the 
lh f igure .  '18. The 
215 m i l e s  pe r  hour and this. speed rem 
severa l  minutes o f  fl ight; .  . ng t h i s  ttme the e leva tor  
was held ftxed by the fTicQ, he system. 

ti& on' the'  1ongitudinkL cha rac t e r i s  
The pilots. cons$dared .the f e e t  of the frit- 

cs  t o  $be, qnd 

' *he long i t ad ina i  s t a b f l i  ne No,.' 00014 
was 'not'  investigated a t  indicate 'd 9 
32D mflbs per hour, but s eve ra l  power-off dfves were' made 

420 miles  per  hour and a t  Mach numbers up t0'0.625.'~ The 

S. A t  high speeds, aonsfderable dff rerenc.~ '  was 

a&ove ab.out 

' . , in airplanes 00056 and 00140 a% Zndic&ted speeds C@ $0 

' s t i ck- f fxed  'and s t ick- free .  s t ab- i l f ty  cha raCte r i s t i c s  of 

measured between the stick+f'ixe'd s t a b i l i t y  exb ib i t s a  by 
a i rp lanes  00056 and bQ140. The c h a r a c t e r i s t i c s  o f '  a i r -  
plane No, O G 1 4 0  were Ce'termined by x-ecordhg the e l eva to r  
angles.  required. i n  s teady f2lg;ht a t  298 m . f L e s  pe,r hour 

. .  and the va r i a t fon  of; e l e v a t o r  angle throughout d ives  t o  
var ious  speeds. On. a i rp lane  No, 00.056, the' kame ,informa- 
t i o n  was obtained except ' thkt. the e l s v a t o r  engles i n  
the dives  were not recorded u n t i l  just b?f 'o~= the dive 
pul l- outs .  The v a r i a t i o n  o f  e l eva to r  angle Ysii.th speed 
during the d ives  of' a f rp lane  00140 I s  plotted .in f i ~ g -  

a i rp lanes  tes,t,ed d i f f e r ed  t o  some ex tan t  at' 

' 

The low- and high-speed e l eva to r  ;ing:Les obtained 
ne 00056 are 'also shown i n  t h i s  .fEgure. 1% 
ha t  a i rp lane  00140 becartle s t a t i c a l l y  unstable 

with s t i c k  fixed above about 320 rnlles per hour, whereas 
a i rp l ane  00056 remained s t a b l e  t o  the hi:.'r?est speed 
t e s t ed ,  WLth the center-of-gravfty.  pos i t ions  used, bo th  

' 

a i rp l anes  had about the same degree of' s t a b f l i t y ' a t  l o w  
Wach numbers. The s t l c k  force i n  the dives of' Fir- 
plane 00140 var ied f rom about 20 pounds push. a t  the  
s ta r t  o f  the dive t o  zero just  before the pull- out .  
This fQrce  v a r i a t i o n  ind i ca t e s  s t f ck - f r ee  s t a t i c  i n s t a-  
b i l i t y ,  The records during the d f v q s  were no t  smooth 
and sonsfderable va r i a t i on .  of nprmal acce l e r a t l on  occurred, 
probably because of the e f f e c t s  of  f r i c t i o n  d.fsoussed 

, previously,  

" 
The characterEs't5cs o f  airplanes 00056 and 

00140 a t  hich speeds a re  out l fned in this repor t  t o  
extend the speed' range of  the t e s t s  o f .  
Several  d i f f e r ences  i n  'the , s tabi fPty  ch 

1 . I  

f 
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of the th ree  .a i rp lanes ,  ,not .completely repor.t;=d 'hereln, 
were measured in the. range of normal flight speeds, . 

14. Charac t e r i s t t c s  o f  the el.evatoi? con t ro l  i n  
. acce le ra ted  f l l g h t  

The characteristics of the e leva tor  con t ro l  i n  
acce lera ted  f l i g h t  were de te-mined' a t  moderate aipspeeds 
from msasurements made i n  rapid turns  a t  severa l  center-  
of-gravfty pos i t ions .  The bobweight was i n s t a l l e d  f o r  
the most rearward cen te r  of gravity t e s t ed .  Bo th  s t a l l e d  
and u n s t a l l e d  tu rns  were made a t  s a v e r a l  speeds. Time 
h i g t o r i e s  of  t y p i c a l  s t a l l e d  twns a r e  @..veri on f igures  21 
and 22. 
was used i n  obta in ing the data is @.van en f i p r e  23. 
The v a r i a t i o n  o f  e lgva tor  angle  with l if t  coef f fc fen t ,  
as meaqured i n  steady, uns t a l l ed  turns ,  fs presented i n  
f igu re  24 f o r  the tf-wes center- of- gravi ty  pos i t ions  
t e s t ed .  From these same turns ,  the variati.om of e leva tor  
s t i c k  fo rce  with normal accol-eration was determined and 
f s  gfven f n  f i gu re  25 f o r  the k h p e  center- of- gravi ty  
pos i t i ons ,  Froni t i gu re .  24 the, slope d6,/dCL was de te r-  
mined for t h e  center-of-gravf ty  pos i t . ion8 t e s t e d  and 
p f Q t t e d  oh f i g w e  26 as. a runbeion of csn te r -of -grav i ty  
pos i t ion .  From fl ,gure.25,  the s t i c k  force  p r  g w a s  
determined and also.plotted on ffguke 25 as a funct ion 
of canter-of-gmvf3;y posztion.. From tlm data presented 
i n  ffgures  2 1  t o  2 6 ,  the following c o n c l u s i o n s  can be 
m a d @  regarding the elsva'toor con t ro l  o f  t;h@ S,E2C-l a i rp l ane  
i n  acce le ra ted  f l . i g h t ;  . . 

A time'history of  a t y p i c a l  s t c a d y . t u r n  such a s  

la) ay u s e . a f  tfie e l eva to r  'control  a lone ,  i t  
was possible t o  develop the 'maxl~um l i f t  coefficient;  
of the a i rp lane  i n  maneuvers ( f i g s ,  .21 and 2 2 ) .  
No attempt w a s  mzde t o  develop the allowable load 
factor. 

coe f f i c i en t  w a s  a smooth cume having a stablo s lope 
f o r  a i  'oantar-of-gravi ty  positions ( f i g .  2 4 ) .  

(b) *The v a r i a t i o n  of' e l eva to r  ang1.a with l i f t  

( e )  Th.e SB2C-1 w i l l  srttisfgr the requirement o f  
reference 2 that the slope o f  the elevator-angle 
curve should be such that  no t  . less than 4 inches of 

. raarward s t i c k  movement 1 s  required t o  change angee 
of a t t a c k  from CL ' o f '  0.2 t o  C L ~ , ~ ,  < I'n the maneud 
vering condit lon o f  f l i g h t  only when the cen te r  of 
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g r a v i t y  i f  forward of 24,6 percent  m a n  aerodynamic 
chord ( f i g .  24). 

( d )  The v a r i a t i o n  o f  e l eva to r  force with 
acce l e r a t fon  was l i n e a r ,  withfn the s c a t t e r  o f  the 
experimental data (fig. 2 5 )  

{e )  The SEC.; l  a i rp lane  will have the des i red  
s t i c k  force  per  g, (3  t o  8 pounds per g, Require- 
ment' D-4, reference 1) a t  center-of-&avfty .posi-  
t i o n s  from 28 ' t o  30 .percent  mean aerodynamic chord 
without the bo'@weight and from 32.  t o  34 percent  
mean aerodynamic chord w f t h  the bobwefght ( f f g ,  2 6 ) -  

From -the data presanted above and from the 
s t a t i c  l ong i tud ina l  s t a b i l i t y  data, it w a s  .poss ib le  t o  
determine, the!  binge-moment cos f f f c i en t s ,  Ch, and Ch6 
of the SB2C-1 e l eva to r .  The values were 1.0.0012 and 
-0.0033, respec t ive ly .  These value-s o f  hinge-moment 
c o s f f i c i e n t  a r e  based Qn f res-s t ream dynamic pressure 
and a value o f  48 f e e t  cubed. f o r  the product of  e l eva to r  
spa2 an.d chord squared. 

00140 En acce le ra ted  f19g:iit a t  hSgh speeds were de t e r-  
mined i n  pu l l- ou ts  from power-off d ives .  The s t i c k  force 
per  g noma1 acce l e r a t fon  is , p lo t t ed  as a funct ion of' 
Nach'num?~er In f i gu re  2 7 ( a )  f o r  a f rp lane  00056 and i n  ' 

f i gu re  27 ib)  f o r  a i rp lane  00140 w i t h  two center-of- gravity 
pos l t fons .  X t  will be noted t h a t  the. s t i ck- force  gradient  
f o r  a i rp l ane  00056 shows a tendency t o  decrease w i t h  
incroas ing Mach nmber .  The s t i ck- force  g rad ien t  f o r  
a i rp l ane  00140 i s  considerably g r e a t a r  'than that; f o r  afr- 
plane 00056 even with a more rearwaxid center- of- gravity 
pos i t ion .  T h i s  d i f fe rence  i a y  be due t o  ,the modified 
e l eva to r  nose shape The s t fck- force  gradient  again 
tends t o  decrease as the Maoh number increases ,  espec3.ally 
w i t h  the more 'rearward center- of- gravi ty  p o s i t i o n .  
Though the s t i ck- force  c h a r a c t e r i s t i c s  a re  p l o t t e d  
aga ins t  Nach number, i t . f s  not  irrplPed tha t  compressi- 
bEl5ty e f f e c t s  were en t f re l -y  responsible f o r  the observed 
changes, inasmuch as considerable dPs tor t lon  o f  ' the e l e-  
va to r  f ab r f c  r e s u l t f n g  from negakive pressure Inside the  
surface  was obsarved t o  occur a t  high speeds, 

The chnrac t e r f s t i p s  of a f rg lanes  00056 and 



I- D o  Cha rac t e r i s t i c s  o f  the e l eva to r  con t ro l  i n  
landing 

The c h a r a c t e r f s t i c s  of the e l eva to r  control  
i n  landing were determined by measuring the e l eva to r  
d e f l e c t i o n  requ i red  t o  make a power-off three-point  
landing. The e l e v a t o r  def lec t fon  required  to land i s  
p l o t t e d  as a funct ion of center- of- gravi ty  pos i t i on  i n  
f i gu re  28. A time h i s t o r y  of a t y p i c a l  landing i s  shown 
I n  f igure  29. F r Q m  the da ta  obtained i n  the landing 
t e s t s ,  ' the fol lowing can be concluded: 

(a*) The e l eva to r s  of the S B Z C - 1  a i rp lane  were 
sur f  i c i e n t l y  powerful t o  perform a three-point  
landing a t  the m o s t  forward center- of- gravity posil- 
tkon t e s t e d  using only 2 3 O  of the ava i lab le  fuLl 
up-elevator de f l ec t i on  of 3 5 O .  It might, therefore ,  
be advantageous t o  decrease the ava i l ab l e  up-elevator 
t ravelL;while  re ta fnfng  the 'same con t ro l  s t i c k  
motfan, thereby increas ing  the mechanical advantage 
of' the e leva tor- cont ro l  system. 

(b) The e leva tor  forces  of  the-SB2C-1 a i rp lane  
$8. landing d i d  not  exceed the allowable force  of  
35 pounds ( reference  2 )  a t  the center-of-gravity 
pos 5. ticjns t e  s ted.  

I-E. Charac t e r i s t i c s  of %he e l e v a t o r  control  i n  
take-off . 

I n  one t e s t  made t o  record the afrspeed a t  which 
the t a i l  could  he ra f sed ,  it was found tha t  the t a f l  
s t a r t e d  to . r ; f se  a t  an a f r spead-of  52 mfles per  hour. For 
t h i s  r u n ,  the f l i g h t  conditfons weye f laps  up, landing 
gear down, 38 inches mercury, 2400 rpm, cen te r  of g r av i ty  
a t  28.4 percent  o f  the mean aerodynamic chord. 

was adequate to: r a i s e  the t z i l  or a d j u s t  the a t t i t u d e  
angle during takedoff a f t e r  s l i g h t l y  more than ha l f  take- 

.of f  s.peed was reached, S t i c k  forces ,  however, wem heavy. 

, .  

According t o  pi1ot . s '  observat ions,  the e leva tor  

\ '  

I-F, TrLm changes due t o  power and f l aps  - 

conf igura t ion and power were measured a t  a speed of 
120 miles per hour w i t h  the center  of g r a v i t y  a t  23.7 per-  
cent  of the mean aerodynamlc chord with landing gear down, 

_ .  
The trfm.changes caused by various changes i n  
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o r  24.2 percent, gear  up. For these ' t e s t s ,  the airplane 
was trimmed In the clfntlbin$ condi t fan  with an e lqvatur  
tab s e t t i n g  of  0 . 2 O  t a l i  heavy and a ' ~ ~ ~ i l c I e : >  t ab  ' s e t t i n g  
of 10.80 nose right. These tab  s e t t i n g s  were held con- 
s t a n t  while the trfm forces  f o r  the v a r i o u s  configura- 
t fons and power were measured. ' k e  m s u 3 t s  of these t e s t s  
ape @van in b b l e  I, It. can, be sacn b$ 'tns:)ection of 
thes t a b l e  t h a t  the changes in. e l eva to r  t i L m  forces  a r e  
wi th in  t$e"value 35 pounds specified by bo th  refer-  
ences f a,pd 2. A s  noted i n  the P o l l o v h g  discussion,  

obtained wtth #other e l eva to r  t r i m  tab s e t t i n g s ,  however, t r i m '  changea exeekding this Xisnit mfght bs . .  

3-G. Cha rac t e r i s t i c s  af' the longitudinal trimming 
d f 3 V i C e  

The power of  the slevii$or t r i m  tabs was de te r-  
mined in three f l f g h t  condit ions (climbing, wave-off', and 
landfng) by measuring t'ne s t jc l r '  fo rces  8.t various spmds 
with two trfm tab dei?7.ecLLio S .  Tha.resulL-s or" these t e s t s  
a r e  given en figures 30 and 31, The d-ata were evaluated 
t o  ob ta in  the f o r c e  per degree trim tab chmge as a.func.- 
t f o n  o f  speed ( P i g .  3 2 ) .  The change hn e leva tor  hinge- 
moment c o a f f f c i e n t  pela degree change i n  tri.n?-tab angles 
was calcula ted -a r id  i s  given as a function of speed in 
fYgur6 33. The hinge-momGnt coerfPcients  a m  based on 
free- stream dgnamfa pressure  and on the  value of  . 
the product o f  the 8pa.n and chord sqv-ared as used- i n  
s e c t r o ~ l  r-c. 

From tkt8 foregoing cUr;ves, t h i s  foil owing GOXI- 
cluslons may be shown: . 

(a) The power o f  the e l e v a t o r  t~iti: tab was . . __ I 

out  the speed range i r r  all flight; .corzclltlons except 
i n  the landing con.dition a.t: speeds b t3 l .o~  93. miles 
p a r  how. 

* adequate t o  reduce the e l eva to r  force  t o  zero through- 

(b) The power o f  the e l eva to r  trim tabs was 
only one-th9rd as g rea t  in the landing c o n d l t i o r i  as 
In the  waye-off' condbtlon. Theref'ore, if the air- 
plane were trimxed full-tail heavy f o r  a landing, 
2nd then rated power were appl ied  f o r  ii wave-off', 
the push f'crrces required for t r i m  would- become, ~ 

excessive as the sp,e&d. increased. T h i s  cha rac t e r i s t i c  
Ss shown In f igure  1 5 f b )  and i n  .Ptgglxre Sl(b}. 
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Table I, however, ind ica tes  t h a t  t r f m  changes. due 
-'to 'power w%th f laps  down a re  no% excessive with the 
'tab ne,ar neu t ra l .  . 

Considerable backlash ex i s t ed  ,be twean ' the hand- 
wheel fn the cockpit  and the t r i m  t ab ,  This' backlash 
occurred be tween the handwheel. and the i r r e v e r s i b l e  
mechanism on the tab controJ.. 1.2; @id not, therefore, ,  
caws? play %n the tF'iw(+ tabs. Because of .this charac- 
t e r i s t i c ,  however, 3.t was difficult t o  obta in  accura.te 
t r i m .  %a73 so ' t t ings i n  the t e s t s .  The t r i m  tzb  would, 
however, r e t a i n  a given s e t t i n g  uniess  cthazzged mahually. 

11, 
I ,  

Requirements f o r  L a t e r a l  S t a b i l i t y  anel Control 

11-A. Charac t e r i s t i c s  of uncontrol led lateral.. and 
d i r e  c t fona l  niotion 

The cha rac t e r i s tbcs  of the uncontrol led l a t e r a l  
. .and d i r e c t i o n a l  rndtfori were determined! in the speed range 

from 100 t o  300 -miles  per  hour f o r  the ~ l i c l i r y  and 
. glfmbing. conditioln and from 90 t o  130 myl,ss per hour . i n  

. the'  XandLng condit'S,on., I n  these tes t t s ,  the  a i rp lane  was 
treinmed' for l a t e r a l l y  l e v e l  f l i g h t  and continuous recores 
were taken while the  p i l o t  abrupt ly  def lec ted  the mflder 
then re leased all cont ro l s  . Typical  time hEs.tories of 
t h i s ,  maneuver a r e  given i n  f i g u r e s  34 and 55. The vark- 
a t i o n  of' the ger iod and number of cycles  t o  damp t o  hal f  
amplitude wfth indfcated  a i rspeed f o r  the f l f g h t  condi- 
t fons  @ested. i s  gfven i n  f igure  36 .  Inspect ion of  th8s 
f i g u r e  shows that the o s c i l l a t i o n s  clamped t o  ha&f amplP-; 
tude wi th in  two cycles i n  a l l  condi t ions ,  t e s t s d .  The 
amplitude o f  tlis s i d e s l i p  angle variabion in these t e s t s  
was between 2' and IOo. For; these amplitudes, thererore ,  
the requPrernents o f '  reference 1 were s a t9 s f l ed .  The 
p i l o t  no'ted, however, khat i n  some runs a t  hP&h speed tha 
l a t e r a l  o s c i l l a t i o n s  appeared t o  be poorly damped and 
that  n contfnuous o s c i l l a t i o n  of' small amplitude might 
e x i s t .  A s  shown in f igure  36, the daniplng of the o s c i l -  
lations y?as becoming poorer  as the  spaed Pncraased. 

. I n  the dives o f * a f r p l a n e  00140, ccntfnuous 
l a t e r a l  oscfllatfons of amplitudes bbtween 0 . 2 O  and 0.7' 
were observed i n  records taken i n  all 'the d i v s s  a t  speeds 
ranging from A60 t o  400 rnfles per  hour. 
held f ixed  by the p i l o t  1x1 these d ives ,  but  it i s  possible 
t h a t  a small  motfon of  the rudder rnfgbt "have occurred 
due t o  f l e x i b i l i t y  9n the contr.01 s y s t s ~ .  Fyom these 

TlLe rudder w a s  
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records ,  E t  was poss ible  t o  axtend the measurements of 
the period o f  the l a t e r a l  o s c i l l a t i o n  t o  390 mi les  per  
hour, a s  shown i n  ffgrirs 36,  The smhll amplitude l a t e r a l  
o s c i l l a t f o n s  were not lceahle  t o  the p41ot ,  expecfa l ly  a t  
high speeds. 

a i l e r o n  o s c f l l a t f o n s  by abrup t ly  defl-ecting the a i l e r o n s  
and then releasfng a l l  con t ro l s ,  but there  was no ensuing 
o s c f l l a t f o n  o f  the a i l e r o n  i t s e l f .  Typical records o f  
t h i s  maneuver a m  given i n  f fgure  37,  

The p i l o t  aktempted t o  ob t a in  short- perfod 

The a i l e rons  d id  not  r e tu rn  t o  trim a t  200 miles 
per  hour because o f  the f r z c t i o n  f o r c e .  

11-B. Afleron-control c h a r a c t e r i s t i c s  (ruddsr 
f i x e d )  

< 

The a i l e ron- cont ro l  charac t e r f s t f c s  (rudder 
f i xed )  were measured i n  abrupt  a i l e r o n  rolls fa the 
landing condit ion and In the el-ean condi t ion with power 
f o r  l e v e l  f l i g h t .  Aileron rolls wsre made i n  the landing 
condi t ion a t  approximately E35 and 105 miles p e r  hour 
Indicated  a i rspeed.  Riler2on r o l l s  twr.'e unad-e in the c lean 
condi t ion a t  approximately 50-mil-e - per-hour increments 
from 1 0  t o  3GO rnilss per hour fnd-fcated afrspeed. 
Duplicate t e s t s  were made Zor the unsealed and sea led  
aLleron ( f i g *  8 ) .  Afrplanc 00014 had unsealed a i l e rons  
a t  the s ta r t  of the t e s t s .  The s e a l s  used were of the 
type t h a t  has sPnce been adoptad for production niodels 
of" t h i s  a i rp l ane .  

Ffgure 38 g i v e s  tfmc h i s t o r i e s  o f  typEcal 
a i l e r o n  rolls, The da ta  obta.intsd fronl the ailei.on r o l l s  
were evaluated  t o  detcrrnfne the vari.ation of a i l e r o n  
e f fec t fveness  pb/2V and change i n  u.ileron s t i c k  force  
w i t h  change fm t o t a l  a i l e r o n  angle,  These da t a  are 
presented 'in figures 39 t o  42,  Ffgures 39 and 40 give 
da ta  Tor the clean condit ion of' f l f g h t  wfth the aileron 
Qnsealed and sealed ,  respect fvely .  Figures 4 1  and 42 
p e r t a i n  t o  a i l e r o n  r o l l s  made i n  the landing conditfon, 
ailerons unsealed and sea led , respec t ive ly ,  From these 
dsita, i t  was poss ib le  t o  d.eternlne the h e l i x  angle Pb/2V3 
t o t s 1  a i l e r o n  de f l ec t ion ,  and r o l l i n g  ve loc i ty  obtainable 
wi th  any s t i c k  f o r c e  through the speed range o f  the t e s t s .  
Figure 43 g ives  values o f  these q u a n t i t i e s  o b t a b a b l e  
with a 30-pOUlld s t i c k  force  as a function o f  speed. 
r o l l l n g  velociky i n  th i s  f'fgure fs comected t o  , 

10,000 f e e t  a l t i t u d e .  

The 
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The data obtatiried i n  th@ t e s t s  revea l ,  the  
following f a c t s  about ths a i l e ron- con t ro l  c h a r a c t e r i s t i c s  
o f  the SB2C-1 al.rplane* 

1, Tlirou.ghout the speed range) the rtlaximum 
r o l l i n g  v e l o c i t y  obtafned 5.n abrupt  a i l e r o n  ~011s 
var ied  smctothly with a f l e r o n  d e r l e c t i o n o  

2 e The v a r i a t i o n  o f  x>ol l%ng a c c e l e r a t i o n  w f t h  
time was i n  the c o r r s c t  d i r e c t i o n  following an abrupt  
a f l e r o n  d e f l e c t i o n  and no lag :vas evident  i n  devel- 
oping the rolling moment, 

3 ,  The e f f e c t  o f  the s e a l s  was t o  increase  
the zPleron s t i c k  forces  s l ight i ly  a t  high speeds and 
increase  the 3 f fec t ivensss  s l i g h t l y  a t  low speeds 

4. For b o t h  the sea led  and unsealed condi- 
t i o n s ,  t h s  a f l s r o n  ef fec t ivenesa  { p b / Z V  per degree 
aileron daf2ec t lon)  a t  100 mil=s per  hour  w a  approx i-  
mately 60 percent  o f  that  obtained a t  2@3 miles per 
h o u ~  or more. 

5, The a i l e r o n  e f f = c t i v e m s s  in the landfilg 
condi t ion  ( f l a p s  and cear C~wn,  lsadinG-edgc s l o t s  
spen) was greater, a t  a. given speed, than In the 
clean condftlon.  Tha r . i leron s i;fck fo rces  were 
about thc: sani5 f n  b o t h  coridftfons o f  f l i g h t o  

l o w  speeds and t?>e heavy s t i c k  Cor;ces a t  h fgh  speeds, 
the a i l e r o n s  f a l l  f a r  short o f  meeting ti23 minimum 
Tiavy pequirepsnt (3equirsment F-8, reference 1) that  
s p e c i f i e s  a value of ~ b / 2 ~  of 0,GS st speeds 
between 140 percent  o f  the stal3.ing speed and 80 per-  
cant  o f  the maxiciwn level-f';.ight apesd, with a 
3G-pound s t i c k  force ,, 

6, Because of  the l o s s  in a f f a c t h e n e s s  a t  

7, The average value o f  dCh/dG f o r  the l e f t  
and r i g h t  a i l e r o n s  for snall d .e f l ec t lons  was ayproxl-  
mate17 -0.0042 p e r  degree,  In  tl?ls ins tance ,  
C h  r ep resen t s  the over- a l l  hinge-moment c o e f f i c i e n t  
as a f fec ted  by d e f l e c t f o n  arid by the response of  
the a i rp lane  i n  a steady roll, The v ~ l u a  of' 
dCh/d6 was a l m o s t   con^ t a n t  through the speed range 
except a t  300 mils=; per hour, the Mgl les t  speed 
t e s t e d ,  vvheiie 8 ~ 1 i g f . i t  increase was observed. I n  
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order  t o  o b t a i n  f u l l  d e f l  
s t l c k  $orme a t  202 miles 
maximum 2sve 1-f l i g h t  indi 

of': -0,00195 woulh be req 

8. The s t r e t c h  f n  4 c- 
? in f l i g h t  -was ds'termined 
GI the 4ngles o f  the a g l e r o  

The reduc t io  
was approjcima s t i c k  f o r c e I  
The st5.fFness 
Navy requfrem 

11-C. Y a w  due t o  a i l e rons  

abrupt  akl escr lbed above + 

angle wag 
because the erons were not  kep t  dcf 
s u f f i c i a n t  $.'time ( f f g .  38) 
i n  f i gu re  ta t h a t  the s 
of sfdeslPp (EOo 2.10' percent; 'of 2; 
w i l l  not  be axcge3od. ' 

* ,, -; .. - " %. * 

a w  due t o  a i l e r o n  

ac-hed i n  ayiy of 

f r o l l i n g  mohcin 
d r a l  e f f e c t )  

m s L l i n g  moment due as  measured 
Be a i l e r o n  angle r 

s l i p s ,  The$ , s ides l ips  w e r e  mads b 
th? rvdder w 18 using the a i l e r o n s  
maintain s t r  ght  flight a t  a speci f  
continuou8 rsoords were read up a t  37s  
The distance betw6:sn the p l o t t e d  po tn t  
be used t o  datermine the r a t e  a t  which 
increased,  The s i d e s l i p  da t a  81-2 p r e s  
ures  44 t o  (3, _I , I n  the f igures ,  rudd 
a i l e r o n  fo e s  and de f l s c t fons  ana t 
are  p l o t t e d l a s l  funct ions  of' sideslip 'an&.,e. , 

* 

Fpom the foregoing data ,  t owing may be 
concluded canceming the d.fhGdral. e f  ~e $B26-L a i r -  
plane : .. 

1, ,p .e re  was consider ib1 dihedral  
e f f e c t  lib a l l  cond'iitions as ind ica ted  the  amount 
of a i l e r o n  d e f l e c t i o n  requfired i n  s i d e s l i p s .  

- 

d 



.. 2. The a i l e r o n  fo rce  in'sXdes1ilp.s w a s  i n  the 
c o r r e c t ' d i r e c t i o n  i n  a l l  condit ions.  At low spesds, 

he fo rces  were of the same drqer as the 
l e ron  f r i c t i o n  force and, the re fore ,  the 
obably would no t  r e t a r n  t o  t r i m  when 

Z. The rolling moment due t o  s i d e s l i p  was 

occurred as B r e s u l t  o f  yaw due t o  a i l e rons .  There 
w a s ,  however,  an  appreciable reduct ion fn a i l e r o n  
effecti 'veness i n  low-speed a i l e r o n  rolls 

8 ,  

- never so ,great  that  a r e v e r s a l  o f  r o l l i n g  ve loc i ty  

, tEon II-€3) which mfght be a t t r i b u t e d  t o  t p o s i t i v e  d ihed ra l  e f f e c t ,  ,. 

I X - X e  \Rudder-control charac t e r f s t l c s  

1, I n  o rde r  t o  de termiw the 
rudder t o  overcorm adverse a i l e r o n  ya e asurement s 
were made o f  the rudder de f l ec t i on  an 
by thc p i l o t  i n  an attempt 60 hold zero change En 
sideslip angle as the a i rp lane  rolled i n t o  a tu rn .  
Tfme h i s t o r i e s  of t h i s  maneuver. a t  100 mOles par 
h o w  are given i n  f i g u r e s  51 and 52, and a t  200 rneles 
pe r  hour i n  f fgure  53. I n  the rolls a t  10O-rniles 
per hour, suff-ician.1; rudde r .de f l ec t i on  was ava i lab le  
t o  overcome the a i l e r o n  yaw, but the rudder force  
requfr'ed was approximately 250 pounds This value 
was considered excessive and exceeds the  l f m i t  o f  
180 pounds recormended i n  reference 2 ,  It i s  noted 
t h a t , i n  the r o l l s  a t  200 mlles  per  hour, the p i l o t  
used ,cons$derably more rudde'r def lec%fon than was 

yaw, however, the fo rce  a t  200 mfles p e r  hour would 
s t i l . 1  .be excessive.  

2 .  The rudder con t ro l  was s u f f i c i e n t l y  pbwer- 
f u l  to .  maintafn d i r e c t i o n a l  con t ro l  during take-off 
and landing.  
i n  ffgu.re 29. 

equired  t o  hold zero s fdes l fp ,  With the 
. .-amount o f  rudder d e f l e c t i o n  t o  overcome adverse - 

A time h i s t o r y  of' a landing i s  given 

3. No t e s t s  were made t o  determine the spin-  

4, A s  shown i n  fSigures 44 t o  50, r5ght rudder 

recovery c h a r a c t e r i s t i c s  o f  th4 SB2C-1 a i rp lane .  

fosce was Pequired t o  hold r i g h t  rudder; deflection 



. .  ? 

. . .* 

" .  

_ .  

and Lef3 rudder- foroe. was required t o  hold l e f t  
rudder de f l ec t ion  f n  .aLl  f l i g h t  nd-itions t e s t e d  
ixcep t  i n  the- climbing cQnd.ft%o 
per  houro .In thess..t&o condftf  ( f ig s ,  48 and 49), 
there ' w a s  a, reversa l  of t he  1 mdder-forc8 Curves a t  
abouk 1-5* sidesbip angle. Therefore,  Raqufrement 2-25, 
refe-remce I, was no t  s a t3a f i ed  in: these : f l ight  con6i- 
%-ions, No t e s t s  were nzade t o  check t h i s  requSremont 

t 95 ana 3.20 rnfles 

I n  the wave-off' condit ion.  . . .  

5 .  The h9nge-mornent coef'ffcLents, Ch6 and C&, 
of %he rudder were est imated f rom the sj-deslfp data 
(figs, 44 t o  $0) and'the data f r o n  the r;uddeT kacks 

and Char approxEmate1-y ze ro  

IL-F. YawZng moment' dyte t o  s i d e s l i p  (directLona1 

(figs., - 34 and 3 5 )  chg eStf!?latSd %O be -0.c1.028 

- .  

s t a b i l i t y )  . ,  

1. AS i t  is s t a t e d  i n  paragraph  XI-^, rnaxinium 
angles o f  s i d e s l i p  due t o  ai$er;ons V J ~ Y B ,  not  obtained, 
but  iC agpears tha t  the yawfdg monicnts ,dud tb' s ide-  
s l i p  (rudder PSxod) were suf f i ' c ien t  t o  r e s t r i c t '  .the 
a i l e r o n  yaw t o  20*. 

always i n  the c o r r e c t  d i r e c t i o n ,  indj.c.t;.ttng p a s i t i v e  
directional stability (ruddey, f i x e d )  ; t h a t  fs,. ' 
rigkit rudder produced l e f t  sideslip mdi. li=Ft' rudder 
p o d u c e d  right s f d e s l i p .  The mdder  d e f l e c t t o n  ctfd 
not quite vary l i n e a r l y  with s i d e s l i p  angles. The 
rudder-fixed d i r e c t i o n a l  s t s r b l l f t  7 tvds s l i g h t l y  less 

aslgles. 

3. The yawing rnoment due t o  s i d e s l i p  (rudder 
?Fee) was found t o  be such that the atr-ftlane would 
always tend t o  re tu rn  t o  zero side'slJ.p, regardless  
of- the angle of  s i d e s l f p  t o  v\rhFch It ir:zs forcea,  i n  
a l l  cond.itiions of' flight t e s t e d  except  i n  the 
clfrnbifig condlt lon a t  95 and 120 rriiles per hour, 
whe re  rudder - force  re  ve T S  a7. o ccurxy 3 E s discus  s e,d 
in sec t ion  SI-::. 
plane weFe flown I n  i% s t t i es l ip  with i'1133 l e f t  rudder, 
a fame of 100 pound5 wov.ld. be req-uTred t o  r e t u r n  
the .wr?der; t o  i t s '  neut ra l spos i t fon  (rig. 49) 

.' 2. The yawing mornant 2u-e t o  s ides ' l ip  w a s  

at s i d e s l i p  angles of' l k s s  than 5 a than u t  Larger- 

If, a t  120 miles pel-. I?c!u~, . t he  air- 
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dder angles and forces  required t o  
s p e l l  r-ange ih the various condi- 

t i o n s  of f l i g h t  are given in figu.res..12 t o  15. 

trrm force  wi speed, but th6 p i l o t s  f e l t  t h a t  i n  

wi th  speed were' axee'ssfver . - . 

' There 
. . i s  no requiremen6 specf r ied  f o r  the change In  rudder 

I . the present  i tance tho changes in rud-der krirn. f o r c e s  

1. * .  

: 11-G. Crosa-wind Tome c h a r a c t e r i s t i c s  

The v a r i a t i o n  of' cross-wind force with s i d e s l i p  
angle was i n  the c o r m c t  direc.t;ion as shown by the v a r i -  

z a t i o n  of angle of bank -with s i d e s l i p  angle ( f i g s ;  44 
t0.'56) . 

T I e H ,  P i t ch ing  moment due t o  s i d e s l i p  

The p i tch ing  moments due t o  sldes1.i.p are shown 
by .the v a r i a t i o n  o f  a levaeor angle a m d  e l eva to r  force  
w i t h  sj.deslip angle ( f i g s .  44 t o  50).  Approximately lo 
01' l e s s  chznge i n  ? l e v a t o r  angle was required a t  95 miles 
per hour'vdien the rudder was moved 5' r i g h t  o r  l e f t  from 

. i t s  pos i t i on  for' ' s t ra ight  f l i g h t ,  

11-1. Power of  rudder and a i l e r o n  t x 7 i 1 u  tabs 

The power; o f  the rudder t r i m  tab was de t e r-  
mined by a method similar t o  t h a t  used t o  determine the 
power.of the e l ava to r  t r i m  t abs  ( s e c t i o n  14). 
ure 54 gfve>s the rudder fo rces  required t o  t i 2 i r n  through 
the speed range w i t h  two rudder tab s e t t i n g s ,  
fo rce  per: degree change i n  trim tab s e t t i n g  j.s p lo t t ed  
as a f w x t l o n  o f  speed i n  f igure ,  55. Tk;s cLange i n  
rudder hSnge-moment coe f f i c t en t  per degree change i n  
t r i m  tab angle is gfven as a funct ion o f  spe3d f n  f i g -  

* ure 5 6 . '  These changes i n  hinge-moment coeff ' ic lents  are 
based on free-stream dynamic p r e s s w e  and on a value of 
44.5 f ee t  cubed f a r  the product of  the rllrdder s p m  and 
chord squared, 

* .  The above data show that  the  rudder trim tab 
I s  s u f f i c i e n t l y  powerful t o  t r i m  the ruddel- force t o  
zero throughout the speed range t e s t e d  (J.OL? t o  320 mfles  
per ho6'r) 

the power of tQe a i l e r o n  t r i m  tab. The a i l e r o n  t r i m  

Fig- 

The rudder 

No quan t i t a t i ve  t e s t s  were made t o  determine 
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, 

forces ,  hovvever, w e m  small. as shown by f igure  57, which 
g ives  the a i l e r o n  for?ce mc?. d e f l e c t i o n  requi red  t o  trim 
through the speed .rangel fn one particulaz. f l iGht ,  These 
curves wr3ul.d be chmged by varying the d i s t r i b u t i o n  of  
f u e l  load  i n  the wing tanks. The a i l e r o n  t r k r i i  tab  was 
repor ted  by the p i l o t  t o  be adequate f o r  trdmrning t h e  
a i rp lane  Zn a l l  condi t ions encountered i n  the t e s t s  

Backlash e x i s t e d  fr, the rl-idd-er and a i l e r o n  
t a b  con t ro l  system j u s t  as i t  did i n  the e l e v a t o r  t r i m  
tab sFstem ( s s c t i o n  I-G) e The ailei7on and rudder trim 
tabs vuould r e t a i n  a g;fven settfrrg I n d e f i n i t e l y  unless  
changed rnannally, I 

111. S t a l l i n g  C h a r a c t e r i s t i c s  

Th.e s t a f l f n g  c h a r a c t e r i s t f c s  of the SB2C-1 airplane 
were de termined i n  s t a l l s  mads by gradual ly  decmasing 
the spesd i n  s t r a i g h t  f l f g h t .  The motions o f  the alp- 
plsne and of the controls were recorded by NACA instru- 
ments. No t u f t  s tud fes  were made a:Qd t h  e f fec t lvsness  
o f  the con t ro l s  wi th  the  a i rp lane  i n  a stalled condi t ion 
was not  ax tensfve ly  invas t iga ted .  The stability charac- 
t e r i s t i c s  and the rnarcfrr,m l i f t  c o e f f i c b n t s  durfng the 
stall a3groa.ches were determined. ‘.?he gun p o r t s  were 
covered wfth doped f a b r i c  throi.lghout tha t e s t s  

condi t ions of f l i ? ,h t  81-3 given fn f f g m e s  58 t o  64, In  
some cases,  the motions 02 khs a i rp lane  and the cont ro ls  
a f t e r  the s t a l l  &re also presented,  The s t a l l i n g  charac- 
t e r % s t i c s  may be swimarized as S o l l o w s ~  

T i m e  M s t o r i e s  of‘ s t a l l  approaches i n  the va r i ous  

( a )  I n  the g l i d i n g  condA.tfon (figa 5 8 )  s t a l l  
warning was provfded by buffeking and by slight 
p i t c h h g  motion o f  the a f r p l a n e ,  Rolling i n s t z b i l L t y  
developed gradual ly ,  Xn the  s t a l l  shown, the use 
o f  the  rudder i n  an  attempt t o  mEi.l..Pn.t;afn cont ro l  a f t e r  
the s t a l l  r e s u l t e d  i n  n rolling o s c i l l a t i o n ,  The 
L i f t  coeff i c i a n t  fnci7eased and decreased as the wing 
a l t e r n a t e l y  s t a l l e d  and u n s t a l l s d ,  s o  t ha t  8 s teady 
value o f  maxfmwn l i f t  c o e f f i c i e n t  could not be de te r-  
mined, Maximum values  rancfng from 1,5 t o  1.6 were 
obtained i n  various s t h l l s  ., 

( b )  I n  the clfmbfng condi t ion  (fig. 591, the 
s t a l l  was preceded by mild rollkng and. p l tchfng  
motions of the a i r p l a n e ,  i+n i n i t i a l  tendcncy t o  
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roll r i g h t  was con t ro l l ed  by use of  the a l l e r o n s .  
La te r  the e levakcr  w a s  moved UJI 15O and the a i rp lane  
skowed no v f o l s n t  tandency t o  roll o f f .  Considerable 
shakfng or" "ihe C G E t Y O l S  occurred w i t h  the  airplarie 
f n  a s t a l l e d  condi t ion ,  The lii't coe f f i c i en t  agafi? 
showed consfderable v a r l a t b n ,  The average value 
Cor fPve s t a l l s  was i,S. 

( c )  T i m ?  h i s t o r i e s  of' s t a l l s  f n  the lagding 
condftfon a r e  given fn f i g u r e s  60 t o  6 2 0  The e f f e c t s  
of  dffrt'erences f n  hood. and cowl-flap pos f t ion  on the 
s t a l lLng  c h a r a c t e r i s t i c s  a re  s'noirm by f i g u r e s  60 
and 61. With t h o  coivl f l n ? s  and hood open ( f f g .  GO), 
buf f s t fng  and shalifng of Lh.3 controls s e t  fn at a 
speed of' 10 mi l e s  pe r  hour above the s t a l l i n g  speed. 
Almost full-u.p e l e v a t o r  angle W ~ S  apj.ilLed In order  
t o  prevent t k i s  hirp1m.e fx-orr?. p i te l l ing cio~jvn, No ~ 

tendency t o  r o l l  o f f  ex i s t ed .  The m a x f m u i i  l i f t  
c o e f f i c f e n t  reached in th ls  run was 1.91,  With 
the cowl flaps and hood closed ( fEgp 61)  , no buf -  
Pe t f n g  was obse rmd u n t i l  the maxfn~w~i I f f  t coef  - 
f i c i s n t  was reached. Tk,e nizximi,xy l i f t  c o e f f l c i e n t  
o f  2.2 was obtained xLth on ly  80 up-elevator sngle .  
Figure 62 fs included t o  show the motlion 02 the 
afrplkne after the s t a l l .  
very  mlld. 

The rolling motion wzs 

(d) In ths approacki condition ( f i g .  631, f u l l  
r i g h t  rudder was required t o  mafntain strafcht P l igh t  
neap minimum s p e d . .  
a s low le?% poll occurred a t  the s t a l l ,  The 8-ver- 
age maximum l i f t  ccsffkcEent in three s t a l l s  i n  the 
approach condition was 2 .4 .  

According t o  t h e  ,nf-lotgs notes,  

( e )  In  the v~ave-off condi t ion ( f f g .  641, f u l l  
r i g h t  rudder was 9nsufficfe1:t t o  rraintafn s t r a l g b t  
f l i g h t  near  the mfnfrnwn s-oeed. %e maxfmwn l i f t  
c o e f f i c i e n t  appeared t o  vary in d f f f e r e n t  runs 
f r om 2,s t o  3.0. 
a s t a l l e d  condftfon f n  s t raQ;ht  f l i g h t  was l imi ted  
by the lack o f  rudder power. 

A.pparently the abf l ' i ty  t o  reash  

Tine h i s t o r i e s  o f  s t a l l e d  turns mEde t o  the 
r i g h t  and l e f t  a t  an  acce le ra t ion  o f  about 5g are given 
fn f i g u r e s  21 and 22, 
rXght a t  the s t a l l .  The xaxfmm l i f t  coefffcLent  was 
about 1.36. 

I n  k o t h  c z s e s  the airplsrze r o l h d  
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A time h i s t o r y  of a three-point  landing i s  
given i n  f i g u r e  29,  The average l i f t  c o e f f i c i e n t  a t  the 
time of' contact  w i t h  the ground i n  e i g h t  landings made 
w i t h  the SE2C-1 a i rp lane  w8.s 1.97, Individual  values 
var ied  from 1.9 t o  2.1. I n  general ,  the higher  values 
were obtafned when the 1Lft c o e f f i c i e n t  was r ap id ly  
increased before contact ,  

I 1. The short-period long i tud ina l  o s c i l l a t i o n s  of' 
the SEZC-1 a i rp l ane  were s a t i s f a c t o r i l y  heavi ly  damped, 
The e l eva to r ,  when su.ddenlg def lec ted ,  .however, would not  
re -turn t o  the t r i m  pos i t i on  because o f  the f r i c t i o n  i n  
the e leva tor- cont ro l  system. 

( s t i c k  f ixed)  i n  the power-off condit ions o f  f l i g h t  va r ied  
from about 34 percent  maan aerodynamic chord i n  the 
g l id ing  condit ion t o  about 31 percent  f o r  the landing 
condit ion.  

The applicatfon of power had a l a r g e  desta- 
b i l i z i n g  e f f e c t ,  resu.ltilzg i n  an  appreciable forward 
s h i f t  of the  n e u t r a l  p o i n t s .  

2.  The neu t r a l  s t a t i c  long i tud ina l  s t a b i l l t y  point  

3. 

4. The s t a b i l i t y  w i t h  s t f c k  f r ee  was lessf than 
wi th  s t i c k  f ixed.  The s t i ck - f r ee  neu t r a l  po in t  was between 
3 and. 4 -pe rcan t  nsan aerodynamic chord forward of the 
s t i ck- f ixed  neutral po in t  Ir: most f l i g h t  condit ions.  

5. The increase  i n  s t a b i l i t y  caused by the 11'-pound 
bobweight corresponded t o  a rearward s h i f t  of the s t l c k-  
f r e e  n e u t r a l  point o f  5 percent  o f  the  mean aerodynamic 
chord I n  a l l  f l i g h t  condit lons.  

6 ,  The combined e f f e c t  o f  f l e x I b i l E t y  znd f r i c t i o n  
i n  the z leva tor -con t ro l  system gave the p: 7 l o t  an unde- 
s i r a b l e  impression o f  i n s t a b i l i t y  when he attempted t o  
fly a t  a conskant speed. 

7 .  The s t i c k  force  per g i n  maneuvers was 
s a t i s f a c t o r y  ( 3  t o  8 pounds per g )  i n  the range of ' 
center- of- gravi ty  positions from 28 -  t o  30. percent  
mean aerod-ynamic chord. A decrease i n  the s t i ck- force  
g rad ien t  was observed In dive  pul l -outs  a t  a Mach number 
i n  the neighborhood o f  0.6. 
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8 ,  The longf tud ina l  t r i m  changes due t o  power and 
f l a p s  were wi th in  the spec i f i ed  l i m i t s  except when la rge  
tab  d e f l s c t i a n s  were used f o r  t r i m  as f n . t h e  larxidng 
condit ion,  

9. The e l eva to r  tab was s u f f i c i e n t l y  powerful t o  
t r fm the a i rp lane  a s  des i red  i n  ths  various f l i g h t  
condit ions.  

10. The con t ro l- f ree  l a t e r a l  o s c i l l a t f o n s  w i t h  
amplitudas between 2 O  and 100 of' s i d e s l i p  damped t o  
one-half amplitude wfthin two cycles ,  but  contlnuous 
l a t e r a l  o s c i l l a t i o n s  of 0,20 t o  0.70 amplitude occurred 
a t  high speed.s. No short-peFiod. o s c i l l a t f o n s  of the 
a i l e r o n s  existed-.  

11, The a i l e ron- cont ro l  ei ' fectfveness met ne i the r  
the Navy nor the 'fiTuCA ifnimum requirements,  

12. The m a x i m u m  yaw due %o a i l e r o n s  was not  deveb  
opad but the da t a  indicated  t h a t  i t  would be less than 
the spec i f i ed  value o f  20' a t  110 percent  o f  the rrnfnirnwn 
speed. 

' 

13. The d ihed ra l  e f f e c t  was pos$,tfve and qu i te  large 
i n  a l l  condftlons t e s t ed .  

14. The m d d e r  provided s u f f i c i e n t  d f r e c t i o n a l  con- 
t r o l  dur ing landing and take- of f ,  The rudder power w a s  
a l s o  adequate t o  counteract  the a i l e r o n  yaw, but  the 
rudder fo rces  were i n  excegs of t h a  spec?.fLed 180 pounds 
pedal fo rce .  The changes i n  rudder t r i m  fo rces  with 
speed were found t o  be excessive. 

15 , The d i r e c t i o n a l  s t a b i l l t y ,  rudder f ixed ,  was 
p o s i t i v e  i n  a11 condit ions and speeds t e s t e d .  The 
d i r e c t i o n a l  s t a b i l i t y  rudder f r e e  was posPtlve i n  a11 
condftiovls and speeds t e s t e d  with the exception of the 
clfribing conditZon a t  95 and 120 miles  per  hour, 
these two cases,  the var ia t ion  of w;udc'er force with 
s i d e s l i p  angle reversed a t  15O s i d e s l i p ,  and the 
d i r e c t i o n  of the fo rces  reversed a t  2 5 O  s i d e s l i p .  

I n  

16, The pPtchlng moment due t o  s f d e s l l p  w a s  wi th in  
the required  l i m i t s ,  there  being l e s s  than lo change of 
e l eva to r  angle required  f o r  5 O  change o f  rudder angle,  

17. The power of  the rudder and a i l e r o n  t r i m  tabs 
was adequa'ce 



18. fn  most f l i g h t  candttions, there was stall. 
warning of one kind or another. There was a f t h e r  
buffeting, shaking of the controls, o r  a gradual. deve- 
lopment of p i t ch ing  or rolling mation,  

Langley l%morial Aeronautfcal Laboratory, 
Nztional Advisory Cornittee f~9r A e ~ ~ o n a ~ t f c s ,  

Langley Field, Va,, March 3.4,' 3,.944:0 

1. Anon.: Specifications for S t a b i l i t y  and Control. Charac- 
t e r i s t i c s  o f  Airplanes, SR-11.9, BUT. Aero., b 

Octo 1, 1942. 

+. 2 .  Gi l ru th ,  R, R e  : Requfrements f o p  Sz t i s f c<c to ry  F ly ing  
Q u a l f t f e  s of  Afrplane s NACA dGR, npril 1941. 
a, 
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S U M M A R Y  O F  H A N D L I N G  C H A R A C T E R I S T I C S  S B Z C - 1  
N A C A  F L I G H T  D E T E R M I N A T I O N  

I.- 

-. 

c 

,... 
:..! 

PERTINENT DEZkBILSt 

WEIGR? 12WO TO 12672 LB 
C. 0. RANGE 23.3 TO 32.3 "/o 
SPAN 49.72 FT 
U.A.C. 9.11 FT 
WIUG A m  422 F S  
A I B W I L  ROOT 2SOlT;  T I P  2SOD9 
TYPE bus 25O DIVX BRbKI;9 AND 

60° S P L I T  FLdp 
CONTROL SURFACE DEFLECTIONS I 

ELEVAKJR (WOM BEIWST AXIS) 35.S0 UP, 
16.6O DQMi 

AILI$ON (?wa N ~ T R A L )  10.7O UP, 
15.00 m m  

RUDnER (FRW TKRUST AXIS) 26O LEFT, 
29' RIGHT 

ELEVATOR INSET H I N W  TYPE 
AILEEONS FRISE TYF'E; RALANCE ThB ON R Z A I L .  
RUDDER INSET HIUGE TYFE 

U C E  TAES ON ELEVATOR AND RUDDER II)CKBD. 

TXPB OF CONTROL SURFACE BALANCE8 

EIIGIBB AND RATING, 
CURTISS-WRIGHT R-2800-3 
Tdag OFF 1703 KP A? 8. 1. 
XILITARY 17W lip 8 .  1. TO %!QO FT 

noma. 1350 BP 6700 TO 1%!QO p1 
N0RW.L im BPS.  L. m 6700 FT 

CONTROL FRICTION (AYERIIOE VALUFI NILR 
1yB[ITBAL): 

ELEVATOR B L B  

AILERON 4LB 

mmKm 1s LB 

819bbB&s: 
STICK WNTROL. 

MUVEETIOW U N D I N G  OSbR. 

8u)P 111 LEADING EDGE OF IIIffi U B B D  O F  
bII€RWS OpEll WHEU U H D I N G  GEIB IS wM(. 

CHAPACTBBISTICS AT HIGB 
LT. CHANGE l0T.A 

DUE TO Lo65 OF E F S i C T I V Q I I S  AT L(ky 
SPEEOG AND HEAVY S T I C K  € i J R C I  A T  HIGR S P E E B .  
TRE AILERONS *ALL SHORT O F  W T I N G  NAW OH 
NACA mu1BmmlS. 

AT 120 MI%; ELBVATOH TAB SETTING OF 0.20 
m I L  HE&V AND A RIIDCER TAE SETTING OF 10.80 
NOSE RIGHT; C.G. A T  23.7 e/. M.A.C., m u  
UP. OR 24.2 '/a I.A.C.. WHEELS m. 

AILERON TRIM CHARACTERIS TiCS I 

W E  AILERON TRIM PJRCB VARIATION3 AT 
m a  SPEED. 

CONDITION ELEVATOR FORCE RUDDER FORCE AILERON ANGLE AND PJRCL lMY BE CHAKWD , CONSILBRkRLY By L W  L M D  I N  WING TAM[L) AS 

d 
IF NU WNW IS e AS I N  NAVE-OFF. 

TAItKEAW. 

E. -3 

LT. SIDpSLIP MLE,DEG RT. 
PCBITIVE lUHEDRAL EFFWT I N  CONDITIONS. 

CONTROL I N  IANDING AND TAKE OFPI 

ADXQUUE m c m m  OF G ~ V I T Y  OF 14 O/O 
Y.A.C. 

290 m SOD MloTs 
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SUMMARY OF HANDLING CHARACTERISTICS SBZC-1  
NACA FLIGHT DETERMINATION - CONCLUDED 

DIRECTIONAL 

YAWING WfdENT DUE TO SIDESLIP: P 

9 

d 
, I  
5 

4 
LT. SIDESLIP ANGLE,DEG RT. 

FUIDIJER RWLFSAL UOES IJOT occm IN GLIDn:G 
OR LANDING CONDITION; ANJ, WE To U R G E  
RUDDER tortes LIYITING mt, ANGLE OF SIDESLIP, 
BEmRSAI. .&S NOT OBTAIlJLu I1 CLIMBIUG CONDI- 
TION AT H I @  SPLED. 

RUDDER TRIM C U C T E 3 I S T I C S  i 
FORCE 

BUDDhB TAB SETTING mlER AT 
1W MPH I300 MA1 

L B S  W 10 O F  ELBvATdR ~ U 1 R k . U  $OR SIDE-  
S L I P  REGUIRIIG 5' OF EJUDhR W C E P T  AT LoFl 
SPEEDG Ili THE CLILMING COWDITION, BIGHT SIUE- 
S L I P .  

3yWAbfica 

(GCILLATIONS JYdlPED TO 1/2 AMPLIllJOE I N  
APPROXIYhlzLY ONE CYCLE. 
R U D D ~ R  DIU NOT mum TO TRIM WSITION. 

A T  L a i  S P E E l s ,  

REaaARIlsr 

WITH FULL R U M R  IS aPPROXIldATELY 5'. 
AT UW SPEED ME ANGLE OF BANK O B T A I h m L E  

CONDIRON 

GLIDING 

CLIL9ING 

LAXDING 

I WAVE-OFF 

DIVE ELAR L 

1 

STALLING 
-I 

G L I D l W  1.6 

CLIMBING 1.9 

W I D I N G ,  COWL 
AND W O D  OPEN 1,9 

LANDING, C W L  
AND H W D  CLOSED 

'.' 
APPROACH 2.4 

WAVE-OFF 2.6 TO 3.0 

LEFT 180Q TURN 1.3s 

RIGHT 180' lURN 1.36 

LANDING 1.97 

WAlMIFG 
GFI 

RhXhBXS 

BUFFETING AND 
SLIGET PITCH- 
ING. 

WILD ROLLING 
AND PITCHIIG.  
CONTROLS SHAKE- 
IBG. 

BUFFETING AND 
S W R I h G  OF 
CONTROLS. 

BUIPETINO AT 
IMXIMLM CL 

WLL RUDDER 
N6CESSARY. 

FlfLL RUDEEIl 
INsllFP ICIENT. 

STALLED AT 3,4g, 
ROLLED RIGHT. 

STALLED AT 3:4g. 
ROLLXI RIGHT. 

ACllJAL THRGE- 
POINT W:DIFG3. 

STRAIGHT ~ L I G H T I  

Rl THE GLIDING O). 'DITION, BJFPETIWG AND 
SLIGHT PITCNING SERVE AS WARNINGS,AND ROLLING 
INSTABILITY DEVELOPS GRAIXJALLY. W I T f 2  POWEX 
ON, LIGHT AILEXON SNATCHING STARTS BEFORE TI($ 
STALL.AND MILD LATERAL INSTABILITY OCWl AT 
THE STALL. I N  LANDING CONDITIOII, BL'FIZTING 
OF TXE AIRPL4NE AND S6WLING OF THE CONTROL5 
GIVE AMPLE I&R3TIMG, AND AT M E  S TALL ONLY 
PITCHING INSTABILITY DEVEM1R. 

RiRliING FLIGHT* 

TEXRE IS NO YIARNING. BJT AS THE STALL IS 
PWCHED, MILD L4TEW.L I l i s T A B I L I T I  tEVELO€S 
WHICR I EASILY CONTROIJAEILE. 

UP ]CLOSED 

W W L D  
RmR COWL PRGSSUrn 
HOOD PLhR IN. KG AT 

SOW 82. 

CLCSED C W E D  FWNW O F F  M E R  OFF 

" om 2400 38 

" 

RRI 

CLOSED FQWER OFF FWGR OFF 

21 

a400 18 

WYLEROW P ( R E R 0 F P  

" o m  2400 

" 

24w 26 



c 

B 
Q) 

3 
. I 4  

I 

rl 



n 

2 
0 
0 
0 

7-l 
I 

c\J 

m 
u1 
u1 

u 
c4 

d 

5 u 

B 
‘S 
2 

w 
0 

a, 

a, 

m 



a 

w 
0 



1 



Flgure 5.- Relation betreen control snrface deflections and st lck and rudder Hdal 
(Elevator and madder sngLff8 with respect to thrast &e; posltlona. 

ailerons w i t h  reapsot to their neutral position.) Curtis8 9B2c-3: alrphue. 
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Figure 8.- Typical aileron a m t i o m ,  Curtisa SB2C-l airplane, 

a 
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Plgure 10.- Sketch of bobweight installation i n  Curtisa SIYC-1 airplane. 
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Plgure 12.- Statie langitudinol stability characteristics in the gliding condition 
(flaps up, larding gear up, power off) Curtlss SBZC-1 airplan@. 



FIgum 13.- Static  longitudinal s t a b i l i t y  characteristics in the climbing aondi&n 
(f laps up, landing gear up, rated power) Curtias SB2C-1 airplane. 





(a) Approach condition (flaps one-half (b) Pave-off condition (flap8 down, 

Rgure 15.- Static longitudinal stabil ity characteristics, Curtis8 SB2C-1 airplane. 

dom, landing gear down, p a r t i a l  landing gear down, rated pow=). 
poam). 

x 



J 





Plgure 18.- Plots showlng stick-fixed and stick-free neutrel points fo r  the various 
airplane condltlons tented. Curtlss SBZC-1 airplane. 





s 

plgure 19.- Tfme history of straight fllght in the gllding condition (flaps up, landing 
gear up, power off). 
h3L@tug a speed of 207 miles per hour. 

Note control force variation used by pilot in 
Curt lss  SB2C-1 airplane Nc. OCl&. 
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Hgme 22.- Time hietoFy of a Fight turn started at  173 miles per hour in llhlah a s ta l l  
occurred (flaps up, landing gear up, hoods closed, cowl flaps cload,  
porsr for level f l I&t) .  
aeroflynamic chord, bobmight installed. 

Center of gravity at  31.3 pement of the mean 
I%Ptiss SB2C-1 afrplm0. 



Rgum 23.- -me history of a steady turn started at  201 m i l e s  per hour. C u r t i s s S C - 1  
airplane (flaps up, landing gear up, hoods closed, cowl flaps closed, power 
for level  f l ight)  center of gravity at 24.1 percent of the mean aerodynamic 
chord, no bobweight. 
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Agure 24.0 Variation of elevator angle pdth l i f t  coefficient In 
turns. Curtiss sB2C-1 alrplane. 
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R g u ~ e  25,- Variation of elevator force wtth normal acceleration 
in turns. Curtisa 982C-1 airplane, 



mgara 26.- Characteristics of etlrtiss seC-1 airplane in steady 
turns. 



=gum 27.- Variation Oi elevator force per g normal acceleration dth Mach mxaber 
in ull-outs fram aives. Curtias SB2C-1 airplanes number 00056 and 
OO&, flap8 up, landing gear up, front hood open, mar hood closed, 
power off. 
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figure 29.- Time history of a three-point landing (flaps clown, lariding gsar down, 
power off) .  
chord. Curtis8 SB2C-1 airplane. 

center of gravity at  27.2 percent of  the mean aerodynmlo 
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Hgure 30.- Variation of  elevator force with speed for two t r i m  
tab settings i n  the climbing condition (flaps up, 
landing gear up, rated power) Curtiss SB2C-1 airplane. 



(a) Landing condition (flaps down, landing gear 

(b) 'lave-off condition (flaps doan, landing gear 

settings.  Curtiss SB2C-1 airplane. 

do-, power err). 

down, f u l l  power). 
Flgure 31.- Variation of elevator force dth speed for two trim-tab 

Flgure 3Zc- Variation of power of elevator t r l m  tab with speed. 
curtias SB2C-1 airplane. 



# 

ret 
H \ '  



I 



d 





=gum 37.- Tim8 hiatorias of  typical attempted aileron oscillatlona, 
Curtias SBZC-1 airplane, flaps up, landing gear up, 
rated pCPaoF. 
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Flgure 39.- Variation of aileron stlck fome and he l ix  angle, pbPV , . w l t h  change 
in total  aileron angle i n  ro l l s  made a t  varlons speeds; flaps up, 
landing gear up, p m r  for leve l  flight, aileron gap unsealed, 
Curtlss Sac-1  alrplane. 
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figure ,!+I*- VarSation of aileron stfek force and helix angle, 
in total aileron angle in rolls made at two speeds; flaps down, 
landing gear down, leading-edge slots open, power-off, alleron gap 
unseale8, Curtiss SB2C-1 airplane. 

pb/2V , w i t h  change 



m e r e  42.- Variation of aileron stiek force and helix angle, pbBV , d t h  change ln 
total  aileron angle i n  ro l l s  mde a t  two speeds; flaps down, landing 
gear doan, leading-edge s lots  open, power o f f ,  a1Perm gap sealed, 
Curtis8 SB2C-1 airplane. 
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d figure 44.- Steady sideslip characteristics in the gliding condition (Plaps'up, 
landing gear up, power off) at 95 miles per hour. Curtiss SeC-1 
airp1atle. 
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ptgure 45.- Steady s i d e s l i p  characteristics in the g'iiaing condltion ( f laps  up, 
landing gear up, power off) at 120 m i l e s  per hour, Curtiss SSC-1 
airplane. 
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mgure 46.- steady sideslip characteristics in the landing condition (flap dorm, 
landing gear.down, power o f f )  at 95 miles per hour. 
ai rplane. 

Curtins SB2C-1 



W e m e  47.- Steady sideslip characteriatica in the landing condition (flaps dom, 
landing gear down, power off)  at 120 miles per hour. Curtias set-1 
airplane. 



Flgurs 48.- Steady sideslip characteristics in the climbing condition (flaps up, 
landing gear up, 58 inches of Hg at 2400 r p m )  at 95 miles per hour. 
Curtis8 SB2C-1 airplane. I 
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Rgure 49.- StoPdy sideslip characterlatics i n  the climb1 condition ( f lapr  up, 
landing gear up, 38 inches of Hg at 2400 a at 120 mller per hour. 
Curtias  SBZC-1 airplane. 



Rgure 50.- Steady sideslip characteristics in  the climbi condition (flaps up, 
landlng gear up, 38 lnches of Hg at  2400 ~7 a t  180 miles per hour. 
Curtlss SBZC-1 airplane. 



Figure 51.- T h e  history of a rol l  into a turm in nrhich the rudder was used in an 
attemp't to  maintain zero sideslip. Curtis8 SWC-1 airplane, flaps 
up, landing gear up, power for level  f l ight .  
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Flgure 52.- Tlme history of a roll into a turn in uhloh the rudder was used in an 
attempt to maintain zero aideslip, Curtis8 Sac-1  airplane, flap# ap, 
landing gear up, powr for l eve l  flight. 
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Flgure 54,- Variation of rudder force dth speed d t h  two nxr3der 
t r i m  tab settings: flapa up, landtng gear up, 
front hood closed, rear hood open, power off.  
curtisa Sac-1  airplane, 

Figure 55.- Vaz5ation of power of ru&&ep t r i m  tab wi%h speed. 
Curtiss SB2C-1 airplane. 
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Figure 58.- Time history of a s t a l l  in the gliding condition (flaps up, landing gear up, 
hoods closed, cowl flaps closed, power off) center of gravity at 29.8 
percent of the mean aerodynamic chord, bobweight installed, Curtlss 
SB2C-1 airplane. 
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Flgure 59.- Time hlatorg of a ata l l  in the climblag ccmdltlan (flaps up, Laadlng g e e  UP, 
hoods closed, t a d  flapa open, rated potrer) center of gravity a t  jo.2 
percent of the mean aerodynamic chord, bobweight installed, Curtias 
sB2C-1 airplane. 



d %%gum 60,- Tfme hiatary of a s ta l l  i n  the lawling aonditian (flaps bow, landing 
gear dom, front hocd wen, rear hood closed, cor1 flaps one- third 
open, power oif) center of gravity at 26.8 percent of the msn aero- 
d m l e  chord. Curtiss SB2C-1 airplane. 



. 

b 

Hgure 61.- Time history of e stall in the landing codLttioa (flap# do=, hrdlag 
gear dom, hocdr olossb, cowl flaps cloaed, power o f f )  cent- of - . 
gravity at 26.8 peresnt of %he aean aerodynamic oharb. 
SB2C-1 a i r p l w .  

Curt%88 



Blgure 62.w The history at a s W 1  in the ladtag oonditian (flnpn dom landing 
gear dom, front hood o1os.d (t), war hood olosridd, aora flaps open, 
power off) oenter or wav%ty ut a b 8  psraen* of the mean aerodpmmfa 
ahod. Cur t lss  SB2C-1 airplane. 



figure 63.- Time history of a stall i n  tE@ approoah pondition (flaps me-half dom, 
landing gear down, front hood open, rear hood cloeed, cor1 flap# 
closed, partial parer) centbr of grmtty a t  29.0 pereon% of the m a a n  
aercdpPamio chord, bobweight installed. Gurtise SB2C-1 airplane. 



P 

Plgurs 611;.. PLme hl.toaf uf a stall in the rave-oif condition ( f l epu  dom, landing 
* gear dm,  iroaf hood open, rear hoed clod, oar1 flaps olosul, rated 

power). 
chord. Cwtlss S a c - 1  airplane, 

Center oP graviff at w.8 pemcmt 61 the mean aerodymanic 


